Decoupling Estimate and Its Applications in Schrödinger Equations

去耦合不等式及其在薛定谔方程中的应用

Zhaozhe Liu (刘兆哲)

Topics:

- Set-up of the Carleson Problem; Previous results
- Sequential Carleson Problem
- Two negative results of the sequential Carleson Problem

We discuss the following Cauchy problem of a free Schrödinger equation,

$$\begin{cases} iu_t - \Delta_x u = 0, & (x, t) \in \mathbb{R}^n \times \mathbb{R}, \\ u(x, 0) = f(x), & x \in \mathbb{R}^n, \end{cases}$$

where $f \in H^s(\mathbb{R}^n)$ with $\|f\|_{H^s(\mathbb{R}^n)} = \left(\int (1+|\xi|^2)^s |\widehat{f(\xi)}|^2 \, d\xi\right)^{\frac{1}{2}}$. Denote the solution as $u(x,t) := e^{it\Delta}f(x)$, where

$$e^{it\Delta}f(x) = (2\pi)^{-\frac{n}{2}} \int e^{i\left(x\cdot\xi + t\cdot|\xi|^2\right)} \widehat{f}(\xi) d\xi.$$

Carleson Problem: When the almost convergence property, i.e.

$$\lim_{t\to 0}e^{it\Delta}f(x)=f(x), \text{a.e.}$$

for $f \in H^s(\mathbb{R}^n)$ holds?

Careleson, 1980	True for j
Dahlberg and Kenig, 1982	n = 1, s
Sjölin and Vega, 1985	$s > \frac{1}{2}, \forall n$
Bourgain, 1995	Improved

True for
$$f\in H^{\frac{1}{4}}(\mathbb{R})$$
, i.e. when $n=1$, $s\geq \frac{1}{4}$. $n=1$, $s\geq \frac{1}{4}$ is sharp. $s>\frac{1}{2}, \forall n$. mproved to $f\in H^{\frac{1}{2}-\epsilon}(\mathbb{R}^2)$ when $n=2$.

Later improved by Tao, Vargas, et al.

Bourgain 2012

For
$$n \geq 3$$
, $s > \frac{1}{2} - \frac{1}{4n}$ is a sufficient condition by mutitilinear estimates for extension operators. For $n \geq 4$, a necessary condition is $s \geq \frac{1}{2} - \frac{1}{2n}$.

Bourgain 2016 Du-Guth-Li, 2017

For all
$$s<\frac{n}{2(n+1)}$$
, there exists counter-example. When $n=2$, convergence for $s>\frac{1}{3}$, i.e. $s>\frac{n}{2(n+1)}$ is sharp when $n=2$.

Du-Guth-Li-Zhang, 2018

When
$$n \geq 3$$
, $s > \frac{n+1}{2(n+2)}$ by linear refined Strichartz

Du-Zhang, 2019

For
$$n\geq 3$$
, $s>\frac{n}{2(n+1)}$ by a broad-narrow analysis, multilinear refined Strichartz estimate and decoupling.

Theorem (Du and Zhang 2019)

For every
$$f \in H^s(\mathbb{R}^n), n \geq 3$$
 with $s > \frac{n}{2(n+1)}$,

$$\lim_{t \to 0} e^{it\Delta} f(x) = f(x)$$
 almost everywhere.

To show the above, it suffices to show the following maximal estimate¹,

$$\|\sup_{0 < t < 1} |e^{it\Delta} f|\|_{L^2(B^n(0,1))} \lesssim_s \|f\|_{H^s(\mathbb{R}^n)}.$$

Remark

The reduction from the maximal estimate to the convergence is due to the **Nikisin-Stein** maximal principle. Hickman 2023

 $^{^1}$ Du and Zhang 2019, "Sharp L_2 Estimates of the Schrödinger Maximal Function in Higher Dimensions", Annals of Mathematics.

A Follow-Up Question: When does $\lim_{t\to 0} e^{it\Delta} f(x) = f(x)$, $\mu-a.e.$ where μ is an α -dimensional measure.

That is to say the set on which the divergence fails is of Hausdorff dimension α .

Denote the size of the divergence set,

$$\alpha_n(s) := \sup_{f \in H^s(\mathbb{R}^n)} \dim_H \{ x \in \mathbb{R}^n : \lim_{t \to 0} e^{it\Delta} f(x) \neq f(x) \}.$$

where the Hausdorff dimension is defined via the Hausdorff content, for a Borel set $A\subseteq\mathbb{R}^n$

$$H^{\alpha}_{\delta}(A) := \inf_{\text{all cover of radius } < \delta} \{ \sum_{i} \operatorname{diam}(B_{i})^{\alpha} : A \subseteq \cup_{i} B_{i} \}.$$

Figure: Previous results on $\alpha_n(s)$

Variants of Carleson Problem

Consider

$$\lim_{n \to \infty} e^{it_n \Delta} f(x) = f(x), \quad a.e.x, \forall f \in H^s.$$

where $\{t_n\}$ is in a Lorentz space $\ell^{r,\infty}(\mathbb{N})$, for $0 < r < \infty$,

$$\{t_n\} \in \ell^{r,\infty} \iff \sup_{b>0} b^r \# \{n \in \mathbb{N} : |t_n| > b\} < \infty.$$

Again, we could reduce the proof of the above convergence to the following maximal estimate.

$$\|\sup_{t_n}|e^{it_n\Delta}f|\|_{L^2(B(0,1))}\lesssim \|f\|_{H^s}.$$

Sequential Case, n=1 and $n \geq 2$

Proposition (Dimou and Seeger 2020)

Let n=1. Then $e^{it_n\Delta}f\to f, a.e.$ if and only if $s\geq \min\{\frac{r}{2r+1},\frac{1}{4}\}.$

Theorem (Cho, Ko, et al. 2023, Li, Wang, and Yan 2023)

Let $n\geq 2$ and $r\in (0,\infty)$. For any decreasing sequence $\{t_n\}_{n=1}^\infty\in \ell^{r,\infty}(\mathbb{N}),\ t_n\to 0$, the following maximal estimate holds for any $s>\min\{\frac{r}{\frac{n+1}{r}r+1},\frac{n}{2(n+1)}\}$, and $f\in H^s(\mathbb{R}^n)$,

$$\lim_{n \to \infty} e^{it_n \Delta} f(x) = f(x), \quad a.e. x \in \mathbb{R}^n.$$

Sequential Case, $n \geq 2$

Theorem (Li, Wang, and Yan 2023 (Negative))

For each $r \in (0,\infty)$, there exists a sequence $\{t_n\}_{n=1}^{\infty} \in \ell^{r,\infty}(\mathbb{N})$, the corresponding maximal estimates fails if $s < s_0 := \min\{\frac{r}{\frac{n+1}{n}r+1}, \frac{n}{2(n+1)}\}$.

Extend previous negative results to fractal settings by following Li-Wang-Yan's approach.

- Construction 1 (originally proposed by Luca and Rogers).
 Construction of divergence set ⇒ Initial Datum.
- Construction 2 (originally proposed by Luca and Ponce). Construction of initial datum \Rightarrow Divergence Set. (Easier to handle)

Theorem (Main Result 1)

Let $\frac{(3n+1)}{4} \le \alpha \le n$. Then for any

$$s < \min\{\frac{(n-1)(1-r)+1}{4}, \frac{1}{2}(n-\alpha) + \frac{(2\alpha-n)}{2(n+1)}\},$$

there exists a sequence $\{t_n\}_{n=1}^{\infty} \in \ell^{r,\infty}(\mathbb{N}), r>0$ with $t_n\to 0$ when $n\to\infty$, and an initial datum $u_0\in H^s(\mathbb{R}^n)$ such that

$$\lim_{t_n \to 0} \sup |u(x, t)| = \infty,$$

for all x in a set of positive α -dimensional measure.

The initial function is defined via its (1)-dim part and (n-1)-dim part:

$$\begin{split} u_0(x) :&= \sum_{j \in \mathbb{N}} e^{i\pi\lambda^j (1,\theta_j) \cdot x} \phi(\lambda^{\frac{j}{2}} x_1) g_j(\overline{x}) \\ &= \sum_{j \in \mathbb{N}} (e^{i\pi\lambda^j x_1} \phi(\lambda^{\frac{j}{2}} x_1)) (e^{i\pi\lambda^j \theta_j \cdot \overline{x}} g_j(\overline{x})), \end{split}$$

where $\widehat{\phi}:=\chi_{(-\epsilon_1,\epsilon_1)}$, $\widehat{g_j}:=\lambda^{j\delta}|\Omega^j|^{-1}\chi_{\Omega_j}$, $0<\delta<\frac{\sigma}{4}$ and $\theta_j\in\mathbb{S}^{n-2}$ being a direction.

$$\begin{split} \Omega^j &= \{\overline{\xi} \in 2\pi \lambda^{j(1-\sigma)} \mathbb{Z}^{n-1} : \lambda^j \leq |\xi_m| \leq \lambda^{j+1}, m = 2, \dots, n\} \\ &+ Q(0, \frac{\epsilon_1}{\sqrt{n-1}}), j \in \mathbb{N}. \ \epsilon_1 > 0 \text{ is a small constant}. \end{split}$$

A set upon which $|e^{it\Delta}f_{\theta_j}|$ is large. To do this, we may consider a "dual" space of Ω^j where the phase $\overline{x}\cdot\overline{\xi}+t|\overline{\xi}|^2\sim 2\pi\mathbb{Z}^{n-1}$.

$$\begin{split} \text{Space } X^j_{t\theta_j} &= \{\overline{x} \in \lambda^{j(\sigma-1)}\mathbb{Z}^{n-1} : |\overline{x}| \leq 2\} + \mathring{Q}(t\theta_j, \epsilon_2 \lambda^{-j}), \\ \text{Time } T^j_{x_1} &= \{t \in \lambda^{j(2\sigma-1)}\mathbb{Z} : x_1 < t < x_1 + \lambda^{-\frac{j}{2}}\}. \end{split}$$

$$\Gamma_{t\theta_{j}}^{j} := X_{t\theta_{j}}^{j} \setminus \bigcup_{j < k \leq 2j} X_{\lambda^{k-j}t\theta_{k}}^{k,\delta},$$

$$X_{\lambda^{k-j}t\theta_{k}}^{k,\delta} := \{ \overline{x} \in \lambda^{k(\sigma-1)} \mathbb{Z}^{n-1} : |\overline{x}| \leq 2 \} + Q(\lambda^{k-j}t\theta_{k}, \epsilon_{2}\lambda^{-k(1-2\delta)}).$$

$$\Gamma_{x_1^j}:=\bigcup_{t\in T_{x_1}^j}\Gamma_{t\theta_j}^j, \text{ and } \Gamma^j:=\{x\in\mathbb{R}^n: x_1\in(0,\frac{1}{2}), \overline{x}\in\Gamma_{x_1}^j\}.$$

$$\Gamma = \limsup_{k} \Gamma^{k} = \bigcap_{j \ge 1} \bigcup_{k \ge j} \Gamma^{k}$$

In order to have $u_0(x) \in H^s(\mathbb{R}^n)$, in other words,

$$||u_0||_{H^s(\mathbb{R}^n)} \sim \left(\sum_j \lambda^{2js} ||\chi_{A(\lambda^j)} \widehat{u_0}||_{L^2(\mathbb{R}^n)}^2 \right)^{\frac{1}{2}} + ||u_0||_{L^2(\mathbb{R}^n)} < \infty.$$

The Plancherel Theorem implies that

$$\lambda^{2js} \| \chi_{A(\lambda^{j})} \widehat{u_{0}} \|_{L^{2}(\mathbb{R}^{n})}^{2} = \lambda^{2js} \| (e^{i\pi\lambda^{j}x_{1}} \phi(\lambda^{\frac{j}{2}}x_{1})) (e^{i\pi\lambda^{j}\theta_{j} \cdot \overline{x}} g_{j}(\overline{x})) \|_{L^{2}(\mathbb{R}^{n})}^{2}$$
$$\sim \lambda^{2js} \cdot \lambda^{-\frac{j}{2} + 2j\delta + (1-n)j \cdot \sigma}$$
$$\sim \lambda^{j(2s - \frac{1}{2} + 2\delta + (1-n\sigma))}.$$

Since $\lambda>1$ and $\sum_j \lambda^{2js} \|\chi_{A(\lambda^j)}\widehat{f}\|_{L^2(\mathbb{R}^n)}^2 <\infty$, the exponent $2s-\frac{1}{2}+2\delta+(1-n)\sigma<0$, therefore it suffices to have

$$s < \frac{(n-1)\sigma}{2} + \frac{1}{4} - \delta.$$

Sequential Structure

Time sequence $\{\frac{t}{2\pi\lambda_i}\}$ is taken from

$$T^{j}_{x_{1}} = \{t \in \lambda^{j(2\sigma-1)}\mathbb{Z} : x_{1} < t < x_{1} + \lambda^{-\frac{j}{2}}\}$$
 where

$$\frac{t_j}{2\pi\lambda^j} \in \left\{ \frac{\lambda^{j(2\sigma-2)}}{2\pi} \mathbb{Z} : \frac{x_1}{2\pi\lambda^j} < \frac{t}{2\pi\lambda^j} < \frac{x_1}{2\pi\lambda^j} + \frac{\lambda^{-\frac{3}{2}j}}{2\pi} \right\}.$$

When $\frac{t_j}{2\pi\lambda^j} o 0$, we have for $x \in \Gamma$,

$$|u(x, \frac{t_j}{2\pi\lambda^j})| \to \infty.$$

Lemma

Given $\{t_n\} \subseteq [0,1]$ a sequence of positive numbers, $\{t_n\} \in \ell^{r,\infty}(\mathbb{N})$ where $0 < r < \infty$ if there exists an uniform upper bound for any b > 0, such that $\sup_{b>0} b^r \# \{t_n : b < t_n \le 2b\} < A < \infty$.

$$b^{r} \cdot \#\{b < \frac{t_{j(k)}}{2\pi\lambda^{j(k)}} \le 2b\} \lesssim b^{r+1} \cdot \lambda^{j(2-2\sigma)}$$
$$\lesssim \lambda^{(r+1)(1-j)} \cdot \lambda^{j(2-2\sigma)}$$
$$= \lambda^{j(1-2\sigma-r)} \cdot \lambda^{(r+1)} < \infty.$$

Now we have that the former lemma holds when $1-2\sigma-r\leq 0 \Rightarrow r\geq 1-2\sigma.$

Theorem (Lucà and Ponce-Vanegas 2022)

Let $n \geq 2$, and $\frac{n}{2} < \alpha \leq d$. Then, for any

$$s < \frac{n}{2(n+2)}(n+1-\alpha),$$

there **exists** $u_0 \in H^s(\mathbb{R}^n)$ such that

$$\limsup_{t \to 0} |u(x,t)| = \infty,$$

for all x in a set of positive $\alpha-$ Hausdorff measure.

Theorem (Main Result 2)

Let $\frac{n}{2} < \alpha \le n, n \ge 2$, then for any

$$s < \min\{\frac{n^2}{2(n+1)} - \frac{(n-1)(r+1)}{4(n+1)}, \frac{1}{2}(n-\alpha) + \frac{(2\alpha-n)}{2(n+1)}\},$$

there exists a sequence $\{t_n\}_{n=1}^{\infty} \in \ell^{r,\infty}(\mathbb{N}), r>0$ with $t_n \to 0$ when $n \to \infty$, and an initial datum $u_0 \in H^s(\mathbb{R}^n)$ such that

$$\lim_{t_n \to 0} \sup |u(x, t)| = \infty$$

for all x in a set of positive α -dimensional measure.

Define the initial datum by its 1-dim part and the (n-1)-dim part.

$$f_{D_k} = f_1(x_1)\tilde{f}(\tilde{x})$$

where

$$f_1(x_1) := e^{2\pi i R_k x_1} \varphi(R_k^{\frac{1}{2}} x_1),$$

 $\operatorname{supp} \hat{\varphi} \subseteq B(0,1) \text{ and } \varphi(0) = 1.$

$$\tilde{f}(\tilde{x}) := \prod_{j=2}^{n} \varphi(x_j) \left(\sum_{\substack{\frac{R_k}{2D_k} < \ell_j < \frac{R_k}{D_k}}} e^{2\pi i D_k \ell_j x_j} \right),$$

Theorem

Given a constant $c\ll 1$ and an integer q>0 such that $\frac{R_k}{D_k q}\gg \sqrt{\ln q}$. If f_{D_k} is an initial datum given as above, then we have

$$\frac{|e^{it\Delta}f_{D_k}(x)|}{\|f_{D_k}\|_2} \gtrsim R_k^{\frac{1}{4}} \left(\frac{R_k}{D_k q}\right)^{\frac{n-1}{2}},$$

for (x,t) such that $0 < t \in \mathcal{N}_{d_k}(\frac{2p_1}{D_k^2q})$ where $d_k := \frac{c}{R_k^2}, t \ll \frac{1}{R_k}$ and

$$x \in E_{q,D_k} \cap [0,c]^n.$$

 E_{q,D_k} is defined by

$$\begin{cases} x_1 \in 2\frac{p_1 R_k}{q D_k^2} + [-c R_k^{-\frac{1}{2}}, c R_k^{-\frac{1}{2}}], \\ x_j \in \frac{p_j}{q D_k} + [-c R_k^{-1}, c R_k^{-1}], j = 2, \dots, n, \end{cases}$$

where $(\frac{p_1}{q}, \frac{p_2}{q}, \dots, \frac{p_n}{q})$ is an admissible fraction.

 $\sup_{0 < t < 1} |e^{it\Delta} f_{D_k}|$ is, in fact, large on the set

$$\bigcup_{1 \le q \le Q_k} E_{q,D_k} \cap \left(\left[\frac{c}{10}, c \right] \times [0, c]^{n-1} \right),$$

when $0 < c \ll 1$ and $\frac{R_k}{D_k Q_k} \gg \sqrt{\ln Q_k}$.

Definition of a, b

Geometry of a single slab s

$$R_k^{-a} := \frac{1}{Q_k^{\frac{n}{n-1}} D_k} \ge R_k^{-1} \Rightarrow a \le 1. \quad R_k^{-b} := \frac{R_k}{Q_k D_k^2} \ge R_k^{-\frac{1}{2}}, \Rightarrow b \le \frac{1}{2}.$$

$$Q_k = R_k^{\frac{n-1}{n+1}(2a-b-1)}, \quad D_k = R_k^{\frac{n-(n-1)a+nb}{n+1}}.$$

Define the initial datum $g_{a,b}$ as the following

$$g_{a,b}(x) := \sum_{k'=4k, k \ge k_0} \frac{k'}{R_{k'}^s} \frac{f_{D_{k'}}(x)}{\|f_{D_{k'}}\|_2}.$$

Define $F_k := \bigcup_{s \in \mathcal{A}_k} s$ and

$$F := \limsup_{k \to \infty} F_k = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} F_k.$$

We eventually show that the Hausdorff dimension of divergent set $\tilde{F}\cap\left([\frac{c}{10},c]\times[0,c]^{n-1}\right)$ is $\alpha:=\frac{1}{2}+(n-1)a+b$, i.e. $\dim_H\left(\tilde{F}\cap\left([\frac{c}{10},c]\times[0,c]^{n-1}\right)\right)=\alpha.$

 $|e^{it\Delta}g_{a,b}(x)|$ is large at time $t_{ ext{divergent}}\sim rac{1}{R^{k'}}$. Construct an interval $[B_{k'},A_{k'}]\subseteq [0,1]$ with length $\simeq rac{1}{R_{k'}}$ at each frequency,

$$[B_{k'}, A_{k'}] := [\frac{1}{2R_{k'}}, \frac{2}{R_{k'}}], k' = 4k, k = 1, 2, \dots,$$

Then we have $B_{k'}=\frac{1}{2R_{4k}}=\frac{1}{2\cdot 2^{4k}}=\frac{1}{2^{4k+1}}$ and $A_{k'+4}=\frac{2}{R_{4(k+1)}}=\frac{1}{2^{4k+3}}=\frac{1}{4}B_{k'}<\frac{1}{2}B_{k'}.$

$$\begin{array}{c|c} 1 & \\ & I_{A_{k'}} & |e^{it\Delta}f_{D_{k'}}| \text{ is large when } t \in \mathcal{N}_{d_{k'}}(\frac{2p_1}{D_{k'}^2}q) \text{ whenever } d_{k'} \sim \\ & \frac{c}{R_{k'}^2}. \text{ Now let us divide each } [B_{k'},A_{k'}] \text{ by } d_{k'} := \frac{1}{R_{4k}^\sigma} \text{ with } \\ & \sigma > 2. \end{array}$$

$$\begin{split} b^r \# \{b < t_n < 2b\} &= b^r \cdot \frac{b}{\frac{1}{R_{4k}^{\sigma}}} \\ &= b^{r+1} R_{4k}^{\sigma} \\ &\lesssim (R_{4k})^{-(r+1)+\sigma} < \infty, \text{ as } b < A_{k'} = \frac{2}{R_{4k}}, \end{split}$$

once we have $r \geq -1 + \sigma$. choose $\sigma := 2\alpha > 2 \cdot \frac{n}{2} = n \geq 2$, then we have a sequence of divergent time with $\{t_n\} \in \ell^{-1+2\alpha,\infty}(\mathbb{N})$.

Recent Progress by Cho and Eceizabarrena

Theorem (Cho and Eceizabarrena 2024, March)

Let n > 2.

• If $n-1 \le \alpha \le n$,

$$s_c^{\max} \geq \frac{n-\alpha}{2} + \min(\frac{2\alpha-n}{2(n+1)}, \frac{r(2\alpha-n)}{r(n+1)+2\alpha-n}).$$

• If $\frac{n}{2} < \alpha \le n-1$

$$s_c^{\max} \ge \frac{n-\alpha}{2} + \min(\frac{2\alpha - n}{2(n+1)}, \frac{r\alpha}{r(n+1) + n}).$$

Key Observation:

•
$$\hat{f}_1(\xi) = \frac{1}{R_b^{\frac{1}{2}}} \widehat{\varphi}(\frac{\xi - R_k}{R_b^{\frac{1}{2}}}) \Rightarrow \frac{1}{S} \widehat{\varphi}(\frac{\xi - R}{S}).$$

• $t \lesssim \min\left(\frac{1}{S^2}, \frac{1}{R}\right)$. The authors focus on the case where $t \lesssim \frac{1}{S^2} \ll \frac{1}{R}$, i.e. $R^{1/2} \ll S \leq R$. We can then solve S.