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We discuss the following Cauchy problem of a free Schrédinger
equation,

iug — Ayu =0, (x,t) € R" xR,
u(z,0) = f(z), xeR",

where f € H*(R™) with | fl|=(ey = (S (1 -+ 1€2)°] F(€) 2 d€)
Denote the solution as u(z,t) := ¢® f(z), where

A f(a) = (2m) 3 / e (e IE) Fle) de.

Carleson Problem: When the almost convergence property,
i.e.

lim e f(2) = f(z), a.e.

t—0
for f € H5(R™) holds?
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Careleson, 1980 True for f € H3(R), i.e. whenn =1, s > 1.
n= 1, s> % is sharp.

Sjolin and Vega, 1985 §> 5 L vn.

Bourgain, 1995 Improved to f € H”e(R2) when n = 2.
Later improved by Tao, Vargas, et al.

Bourgain 2012 Forn >3, s > 1 — L is a sufficient condition by

mutltilinear estimates for extension operators.

For n > 4, a necessary condition is s > s — ﬁ

For all s < m there exists counter-example.
When n = 2, convergence for s > %
ie. s> % is sharp when n = 2.

Du-Guth-Li-Zhang, 2018 When n > 3, s > by linear refined Strichartz

2(n+2)

n
For n Z 3, s> 2t 1)
multilinear refined Strichartz estimate
and decoupling.

by a broad-narrow analysis,
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Theorem (Du and Zhang 2019)

For every f € H*(R™),n > 3 with s > 2(n+l)

}m% A f(x) = f(x) almost everywhere.
—

To show the above, it suffices to show the following maximal
estimatel,

I sup (e flllz2Bno1)) Ss 1l cen)-
0<t<1

Remark
The reduction from the maximal estimate to the convergence is
due to the Nikisin-Stein maximal principle. Hickman 2023

1Du and Zhang 2019, “Sharp Lo Estimates of the Schrédinger Maximal Function in Higher Dimensions”,

Annals of Mathematics.
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A Follow-Up Question: When does lim; .o "2 f(z) = f(z),
1 — a.e. where i is an a-dimensional measure.

That is to say the set on which the divergence fails is of
Hausdorff dimension .

Denote the size of the divergence set,

an(s):= sup dimg{z € R": lim "> f(z) # f(z)}.
feHs(R") =0

where the Hausdorff dimension is defined via the Hausdorff
content, for a Borel set A C R"

HY(A) := inf {)  diam(B;)* : A C U;B;}.

all cover of radius < §
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s n (s): Hausdorff dimension of divergent set

Undetermined
part

Figure: Previous results on a,(s)
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Variants of Carleson Problem

Consider

lim e2f(z) = f(z), a.ex,Vfe H®.

n—oo
where {t,} is in a Lorentz space ¢""*°(N), for 0 < r < o0,
{tn} € (" <= supb"#{n € N: |t,| > b} < o0.
b>0

Again, we could reduce the proof of the above convergence to the
following maximal estimate.

Isup e flll 2 (m0,1)) S I 12

n
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Sequential Case, n =1 and n > 2

Proposition (Dimou and Seeger 2020)
Let n =1. Then "> f — f, a.e. if and only if

s> min{y. 1)

Theorem (Cho, Ko, et al. 2023, Li, Wang, and Yan 2023)

Let n > 2 and r € (0,00). For any decreasing sequence

{tn}>2, € ">°(N), t,, =0, the following maximal estimate holds
for any s > min{ "+1r+1’ D) },and f € H¥(R"),

lim e?f(z) = f(z), a.exeR™

n—o0
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Sequential Case, n > 2

Theorem (Li, Wang, and Yan 2023 (Negative))

For each r € (0,00), there exists a sequence
{tn}5o, € £M°(N), the corresponding maximal estimates

fails if s < sp := min{ n+1,’,+17 2(n+1)}

Extend previous negative results to fractal settings by
following Li-Wang-Yan's approach.

e Construction 1 (originally proposed by Luca and Rogers).
Construction of divergence set = Initial Datum.

e Construction 2 (originally proposed by Luca and Ponce).
Construction of initial datum = Divergence Set. (Easier to
handle)
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Theorem (Main Result 1)
Let (3@%1) < «a <mn. Then for any

(mn—1)1-7r)+11 (2a — n)
1 ai(n—@)‘Fm},

s < min{

there exists a sequence {t,}°°; € {"*°(N),r > 0 with t,, — 0
when n — oo, and an initial datum vy € H*(R™) such that

lim sup |u(zx,t)| = oo,
tn—0

for all x in a set of positive a.-dimensional measure.
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The initial function is defined via its (1)-dim part and (n — 1)-dim
part: _ _
ug(z) 2= D NG\ ) ()
jeN
= D (@™ g (g, ()

JjEN
where qg:: X(=er,e1) 95 7= )\j6|Qj|_1XQj,O <6 < 7 and
0; € S"2 being a direction.

V= {€e2rN=IZm 1 N <6, <V m=2,...,n}
+Q(0,

),7 € N. e; > 0 is a small constant.

€1
vn—1
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A set upon which |eimf9j| is large. To do this, we may consider a
“dual” space of €/ where the phase Z - & + t|£|? ~ 277" L.

Space Xfej = (e NIz 7] < 2} 4+ Q(t8), e2)77),

Time 79, = {t e N V7 : 0y <t < 2y + A2},

J oo xJ ) . ykd
Ty, i= X \ Ui<n<2i X iz, »

X])f”ijtek = {f c )\k(afl)anl : |§| < 2}+Q(Ak7‘jt9k,62A7k(1726)).

, . 1. .
L= U Iy, and IV == {z € R" : 2 € (0, ShTETL )
teTy,

[ = limsup'* = MNj>1 Ug>; r*
k
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In order to have ug(xz) € H*(R™), in other words,

2

HUOHHS(R”) ~ Z)‘QjSHXA(AJ')%Hi?(Rn) + HUOHL?(Rn) < 0.
J

The Plancherel Theorem implies that
S P S i\ x z T x
A2 X Ay @0 22y = A2 (€™N ™1 (A1) (€7 O g5 () |32 gy
N)\2]s )\—§+2j6+(1 n)j-o

-~ )\j(2s—§+25+(1—n0))‘
Since A > 1 and ), )\QjSHXA()\j)fHQLQ(Rn) < 00, the exponent
25 — 3 +20 + (1 — n)o < 0, therefore it suffices to have

(n—1)0 1
— 4+ -4
s < 5 +4
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Sequential Structure

Time sequence {55} is taken from
J

Th ={te N V7 0 <t <+ )\_%} where

. 3.
ti . A\ (20-2) 2! _ t _ 1 A" 27
2 o2 2N 2wN 27N 2
When 2tj - — 0, we have for z €T,
T
tj
u(x - 00
u(e, 55|
0 SoaTT A5G+ 1

a7
27 AT +1 + 2

.
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Lemma

Given {t,} C [0, 1] a sequence of positive numbers, {t,,} € {">°(N)
where 0 < r < oo if there exists an uniform upper bound for any

b > 0, such that supy~ob"#{t, : b <t, <2b} < A < o0.

2;;/ )_;/ + )‘_)f‘/
0 2,‘;\%1‘ P:\ﬁn‘: A’%Q([H‘ 1
r Lj(k) (220
Vb <o m SWESYT N
s

< \HD(=F) | 3i(2-20)
_ )\j(1—20'—7”) . )\(7‘4—1) < 0.

Now we have that the former lemma holds when
1—-20—r<0=r>1-20.
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Theorem (Luca and Ponce-Vanegas 2022)
Let n > 2, and g < «a < d. Then, for any

n
1—
s<2(n+2)(n+ a),

there exists uy € H*(R™) such that

lim sup |u(zx,t)| = oo,
t—0

for all x in a set of positive at— Hausdorff measure.
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Theorem (Main Result 2)
Let 5 < o < n,n > 2, then for any
n? (n=1)(r+1) 1

s<min{2(n+1)— A+ 1) ai(n—a)'f‘

(2a —n)
2(n+1)

|2

there exists a sequence {t,}5° ; € {"*°(N),r > 0 with t,, — 0
when n — oo, and an initial datum ug € H*(R™) such that

lim sup |u(x,t)| = oo
tn—0

for all x in a set of positive a-dimensional measure.
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Define the initial datum by its 1-dim part and the (n — 1)-dim part.

fop = fi(21) f(2)
where )
filay) == T o(REay ),

supp¢ C B(0,1) and ¢(0) = 1.

f@) =[] elx;) S et

Jj=2 Ry,

Ry
a0, <li<p,
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Theorem
Given a constant ¢ < 1 and an integer ¢ > 0 such that

j%“q > /Ingq. If fp, is an initial datum given as above, then we

have )
itA =
€2 i ()] ont ()

[ fDyll2 Dyq

for (z,t) such that where dj, 1= 45,1 < R%
2 :

and
x € Eyp, N[0,d".

E, p, is defined by

D=
=

SRy 7],

R _
I € 21:]1D2k ‘|’ [_CRIC

x; € q‘%k + [—cR;l,chzl],j =2,...,n,

B B2, .. PB2) is an admissible fraction.
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Supg<i<1 |2 fp,| is, in fact, large on the set
c n—1
U Eun 0 ([5G x [0.d77).
1<q<Qx

when 0 < ¢« 1 and Dfé)k > V/In Q.

Ty Z1
L@ 000
o
"
0°0 0 O
Dood@
Qa,9) B Q)
Definition of a,b Geometry of a single slab s
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1 Ry

ca 1 b
K Dk
20—b—1 n—(n—1)a+nb
Qk _ Rn-H( )7 -Dk _ Rk n+1

Define the initial datum g, ; as the following

ga7b(l‘) — Z K ka/ (SU) .

w—irione Tk 1oy 12

Define Fj, := [Jyc 4, s and

F :=limsup Fj, = Ny~ Up—,, Fi.

k—o0

_1
2

=b<

I\D\H

We eventually show that the Hausdorff dimension of divergent set

FN([5,dx[0,dv ) isa=1+n—1)a+b, ie

dimp (Fﬂ ([55.¢] x [0,c]"~ )) = a.
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\eimgayb($)| is large at time tdivergent ~ ?. Construct an interval
[Bir, Air] € [0, 1] with length =~ R%, at each frequency,

1 2
[Bk/, Akl] = [ﬁk,’ E], k’l == 4]{', k = 1, 2, ey
_ 1 _ 1 _ 1
Then we have By = SRy — 291 — 3Tl and
_ 2 _ 1 _1 1
RVEVES Rarn)  20F98 = 1B < 5B
1
Ay |e”Aka,| is large when t € Ndk,(%q) whenever dy ~
ol RCQ . Now let us divide each [By/, Ax/] by dir := R%Tk with
k./
o> 2
0
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b

1
Ry,

_ pr+1l po
=b""Rj,

b #{b<t, <2b} =0b"-

2

< (Ry) 47 <00, as b < Ay = —,
Ry

once we have r > —1 + 0. choose ¢ :=2a > 2 - % =n > 2, then
we have a sequence of divergent time with {t,} € £~172%°(N),
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Recent Progress by Cho and Eceizabarrena

Theorem (Cho and Eceizabarrena 2024, March)
Let n > 2.
o Ifn—1<a<n,

n—a« . 2a—n r(2a — n)
+ min( ,
2n+1)" r(n+1)4+2a—n

max

¢ T2

).

o lfg<a<n-—1

Key Observation
o fi(6) = LB = 100555,
RZ  R?

e t < min (S— E) The authors focus on the case where

tS o < 3 ie R'Y/? <« S < R. We can then solve S.

N7
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